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SUMMARY 

A 4068 N-m-sec (3000 lb-ft-sec) l abora to ry  test  model annular  momentum 
c o n t r o l  device  (AMCD) is described and s t a t i c  and dynamic test r e s u l t s  are pre-  
sen ted .  An AMCD is a sp inning  annular  r i m  suspended by noncontact ing magnetic 
bear ings  and powered by a noncontact ing l i n e a r  e lec t romagnet ic  motor. Test 
r e su l t s  inc lude  spin-motor to rque  characterist ics and spin-motor and magnetic- 
bear ing  drag l o s s e s .  L imi t a t ions  of some o f  the  des ign  approaches taken  are 
a l s o  d iscussed .  

INTRODUCTION 

The annular  momentum c o n t r o l  device (AMCD) r e p r e s e n t s  a new development 
i n  t h e  f i e l d  o f  momentum s t o r a g e  devices  (ref.  1 ) .  The basic concept o f  t h e  
AMCD is t h a t  o f  a r o t a t i n g  annular  r i m  suspended by noncontact ing magnetic 
bearings and powered by a noncontact ing l i n e a r  e lec t romagnet ic  motor ( f i g .  1) .  
A detai led d i scuss ion  o f  t h e  r a t i o n a l e  f o r  t h e  AMCD conf igu ra t ion  and i ts  
p o t e n t i a l  a p p l i c a t i o n s  are presented i n  r e fe rence  2 .  Although the  ma jo r i ty  
o f  the  a p p l i c a t i o n s  d i scussed  i n  t h e  r e fe rence  are s p a c e c r a f t  o r i e n t e d ,  i t  
appears  t h a t  t h e  concept  may a l s o  have s i g n i f i c a n t  advantages as an energy 
s to rage  device f o r  Earth-based a p p l i c a t i o n s  ( refs .  3 t o  5 ) .  Because o f  i ts 
unique conf igu ra t ion ,  an AMCD p r e s e n t s  s e v e r a l  des ign  c o n s t r a i n t s  which i n t e r -  
act w i t h  a l l  components a n d , r e s u l t  i n  basic requirements  f o r  any AMCD des ign .  
A s  pointed o u t  i n  r e f e r e n c e  2 ,  any number o f  v a r i a t i o n s  i n  the  des ign  o f  r i m ,  
motor, and/or bea r ings  could be made i n  an a t tempt  t o  bet ter  meet t h e  s p e c i f i c  
des ign  requirements  f o r  a given a p p l i c a t i o n .  General  des ign  cons ide ra t ions  are 
l i s t e d  and d iscussed  i n  t h i s  r e fe rence .  I n  o rde r  t o  i n v e s t i g a t e  any p o t e n t i a l  
problem areas i n  implementing t h e  AMCD concept  f o r  large radial  dimensions,  a 
l abora to ry  t es t  model AMCD was designed and f a b r i c a t e d  under c o n t r a c t .  The 
l abora to ry  model has  been de l ive red  and pre l iminary  tes ts  performed. 
i nc ludes  a br ief  d e s c r i p t i o n  o f  t h e  l abora to ry  model AMCD assembly and r e s u l t s  
of s t a t i c  and low-speed dynamic tes ts .  

This  paper 

SYMBOLS 

p o s i t i o n  g a i n  

electromagnet  g a i n  

equ iva len t  permanent-magnet s t i f f n e s s  

der ived rate g a i n  

suspended mass 

power 

Laplace v a r i a b l e  



X r i m  displacement  

XC p o s i t i o n  command 

w frequency 

MODEL DESCRIPTION 

A brief d e s c r i p t i o n  of t he  l abora to ry  model AMCD shown i n  f i g u r e  2 is pre-  
sen ted  i n  t h i s  s e c t i o n .  A more detailed d e s c r i p t i o n  o f  t h e  subsystems is g iven  
i n  r e fe rence  6.  The l a b o r a t o r y  model ( f i g .  2 )  c o n s i s t s  o f  a graphite-epoxy com- 
p o s i t e  r i m  which is 1.6 m (63  i n . )  i n  diameter, weighs 22.4 kg (49.4 l b ) ,  and is 
designed t o  r o t a t e  a t  a speed of 2703 rpm. A t  t h i s  speed t h e  r i m  momentum is 
4068 N-m-sec (3000 lb-ft-sec). 
suspension s t a t i o n s .  Magnetic-bearing elements  l oca t ed  i n  the  suspension sta- 
t i o n s  i n t e r a c t  w i t h  a low-loss ferri te material, embedded i n  t he  r i m ,  t o  pro- 
duce radial  and a x i a l  suspension fo rces .  Electromagnet ic  s t a t o r  e lements ,  a l s o  
loca ted  a t  the  suspension s t a t i o n s ,  push and p u l l  a g a i n s t  72 equa l ly  spaced 
samarium c o b a l t  permanent magnets, embedded i n  the  r i m  near  the  ou te r  edge, t o  
produce s p i n  to rques .  The s ta tor-element  d r i v e  e l e c t r o n i c s  are commutated by 
s i g n a l s  from a Hall effect  device which senses  t h e  p o s i t i o n  o f  t h e  magnets. 

The r i m  is suspended by three equa l ly  spaced 

I n  o rde r  t o  prevent  damage t o  the  r i m  i n  t he  event  o f  a magnetic suspen- 
s i o n  f a i l u r e  dur ing  s p i n  tes ts ,  t he  AMCD l a b o r a t o r y  model assembly inc ludes  a 
backup bear ing  system. The system has s i x  bea r ings  (two per  suspension sta- 
t i o n )  which are designed t o  slow and suppor t  the r i m .  The bear ing  system pro- 
v ides  h y d r o s t a t i c  a i r  pads f o r  radial c o n t r o l  and hydrodynamic a i r  pads' f o r  
axial c o n t r o l .  The backup and suspension bea r ing  assemblies are supported by 
an aluminum baseplate. A vacuum cover  (no t  shown) f i ts  over  t h e  bearing-motor- 
r i m  assembly and b o l t s  t o  the  basep la t e  f o r  high-speed s p i n  tests. 

Figure  3 is a close-up of  one of t h e  suspens ion  s t a t i o n s .  There are eight  
magnetic-bearing e lements ,  fou r  t op  and four  bottom, which provide a x i a l  sus- 
pension. A t o t a l  o f  fou r  e lements  are mounted around the  i n s i d e  o f  t h e  r i m  
which, i n  conjunct ion  w i t h  the  o the r  two s t a t i o n s ,  provide radial  suspension.  
The cen te r  s t r u c t u r e  mounts the  a x i a l -  and r a d i a l - p o s i t i o n  senso r s  f o r  t h i s  
s t a t i o n .  The senso r s  c o n s i s t  o f  a variable-impedance br idge wi th  an a c t i v e  
c o i l  and a r e fe rence  c o i l .  They are s e n s i t i v e  t o  anyth ing  t h a t  changes t he  
induc tance 'o f  the  a c t i v e  c o i l  i n  the sensor  probe such as the c l o s e  proximity 
o f  a magnetic material. 
u re  4 is a c ross - sec t iona l  drawing of a suspension s t a t i o n  and shows the  r i m ,  
bear ings ,  and spin-motor e lements  i n  more de t a i l .  The magnetic-bearing gaps  
w i t h  the r i m  cen te red  are 2.54 mm (0.1 i n . ) .  

I n  t he  AMCD r i m  t h e  ferr i te  material is sensed.  Fig- 

RESULTS AND D I S C U S S I O N  

Magnetic-Bearing System 

As described i n  r e f e r e n c e  6 ,  the  AMCD magnetic bearings u t i l i z e  permanent- 
magnet f lux  biasing. The advantages o f  t h i s  technique inc lude  ( 1 )  a l i n e a r  
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r e l a t i o n s h i p  between f o r c e  and c u r r e n t  a t  a given ope ra t ing  po in t  can be e a s i l y  
ob ta ined ,  (2) with permanent magnets supply ing  a p o r t i o n  of  t h e  f l u x ,  t h e  power 
r equ i r ed  t o  suspend t h e  r i m  i n  a l g  ( l g  = 9.8 m/sec2 (32.2 ft/sec2)) environ-  
ment is reduced, and ( 3 )  t h e  permanent magnets supply t h e  cons t an t  f l u x  r equ i r ed  
f o r  zero-power ope ra t ion .  

The f o r c e  produced by a g iven  s t a t i o n  a t  a g iven  equ i l ib r ium p o s i t i o n  can 
be represented  by t h e  fol lowing equat ion  from reference 6: 

F = K B I  + Kmx ( 1 )  

where KB is t h e  electromagnet  g a i n  i n  fo rce  u n i t s  pe r  u n i t  c u r r e n t ,  Km is 
an equ iva len t  permanent-magnet s t i f f n e s s  i n  f o r c e  u n i t s  pe r  u n i t  displacement ,  
I is a given electromagnet  c u r r e n t ,  and x is a given r i m  displacement.  A 
s i m p l i f i e d  block diagram of a magnetic-bearing suspension se rvo  us ing  the  f o r c e  
model of equat ion  ( 1 )  is shown i n  f i g u r e  5 where KR 
is t h e  der ived  rate g a i n ,  and m is t h e  suspended mass. The closed-loop t r a n s -  
fer func t ion  becomes 

KA is t h e  p o s i t i o n  g a i n ,  

which is a c l a s s i c a l  second-order t r a n s f e r  func t ion  w i t h  a n a t u r a l  frequency of  

and a damping r a t i o  of 

P = (&)- KRKB 

m 

The cond i t ions  for s t a b i l i t y  a r e  KAKB > Km and KR > 0. The dc g a i n  o f  t h e  
system becomes 

From equat ion  (5)  it is obvious t h a t  as KAKB * Km, hence as Wn * 0 ,  

* -. Figure  6 is a Bode p l o t  i l l u s t r a t i n g  t h e  v a r i a t i o n  i n  c losed-loop 
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g a i n  i n  dB a t  d i f f e r e n t  n a t u r a l  f requencies  normalized t o  iK,/m. 
seen  from t h i s  f i g u r e ,  the ze ro  dB crossover  frequency approaches 
lower l i m i t .  Ear ly  tests revea led  t h a t  t h e  r i m  had s t r u c t u r a l  modes (charac- 
ter is t ics  o f  t he  rim are descr ibed i n  a subsequent s e c t i o n )  c l o s e  enough t o  t h e  
lower bandwidth l i m i t  determined by t h e  permanent magnets t o  restrict t h e  amount 
of  rate ga in  tha t  could be u t i l i z e d  without  caus ing  s t r u c t u r a l  r i ng ing .  Conven- 
t i o n a l  methods o f  f i l tering ou t  t h e  s t r u c t u r a l  f r equenc ie s  were unsuccessfu l  due 
t o  t h e  extreme s e n s i t i v i t y  of  t he  system p o l e s  t o  t he  i n t r o d u c t i o n  of lags down 
t o  f requencies  which included the s t r u c t u r a l  f r equenc ie s  o f  i n t e r e s t .  Low sys- 
tem damping, a long  wi th  o the r  effects o f  permanent-magnet f l u x  b i a s ing ,  and r i m  
warp ( t o  be d iscussed  subsequent ly)  combined t o  prevent  t h e  r i m  from a t t a i n i n g  
a s table  s p i n  speed i n  excess  o f  475 rpm. 

As can be 
\IK" as a 

V i r t u a l l y  zero-power ( V Z P )  mode.- A s  descr ibed i n  re ference  6 ,  t h e  VZP mode 
c o n s i s t s  o f  a method t o  b i a s  t he  equ i l ib r ium p o i n t  of t he  r i m  t o  a p o s i t i o n  i n  
the  bearing gaps where t h e  mass of t he  r i m  is supported by f l u x  suppl ied  only  
by t h e  permanent magnets. 
t i o n  i n  a Ig environment. However, the VZP equ i l ib r ium p o i n t  f o r  t h e  l a b o r a t o r y  
model was approximately 1.143 mm (0.045 i n . )  above the  c e n t e r  o f  the  bea r ing  
gaps.  This  was found t o  be i n s u f f i c i e n t  c learance  f o r  s p i n  tests,  and s i n c e  
changing between VZP and p o s i t i o n  modes n e c e s s i t a t e d  r e s e t t i n g  t h e  backup bear- 
i n g s ,  t he  VZP mode was not  u t i l i z e d  beyond pre l iminary  s t a t i c  tests. 

The advantage of  t h i s  method is  lower power consump- 

Wahoo mode.- The Wahoo mode, as descr ibed i n  r e f e r e n c e  6 ,  performs a func- 
t i o n  f o r  t h e  radial  suspension equiva len t  t o  t h e  func t ion  performed by t h e  VZP 
mode f o r  t h e  a x i a l  suspension wi th  t h e  added f e a t u r e  o f  a l lowing f o r  r i m  expan- 
s i o n  a t  h igher  speeds.  I n  t h e  l abora to ry  model tests the  assembly was mounted 
wi th  t h e  r i m  s p i n  a x i s  v e r t i c a l  so t h e  equ i l ib r ium radial  p o s i t i o n  was centered  
i n  the  bearings. However, s i n c e  the  r a d i a l - p o s i t i o n  mode exhib i ted  better damp- 
i n g  than the  Wahoo mode and t h e  a x i a l  bear ings  were suppor t ing  t h e  r i m  weight ,  
the r a d i a l - p o s i t i o n  mode was u t i l i z e d  f o r  the  ma jo r i ty  o f  the s p i n  tes ts .  

R i m  

R i m  f a b r i c a t i o n . -  The l abora to ry  model AMCD r i m  was fabricated by wrapping 
a g r a p h i t e  f i lament  t a p e ,  impregnated w i t h  r e s i n ,  on a s p e c i a l  sp ind le  producing 
100-percent c i r c u m f e r e n t i a l  f ibers  ( r e f .  6 ) .  The advantage of  t h i s  technique i s  
t h a t  t h e  f u l l  s t r e n g t h  o f  t he  material can be u t i l i z e d  ( r e f .  2 ) .  However, s i n c e  
t h e  f ibers  are 100-percent c i r cumfe ren t i a l ,  t he  only r e s i s t a n c e  t o  c reep  a long  
t h e  a x i s  p a r a l l e l  t o  the  s p i n  a x i s  is provided by epoxy. It was discovered 
e a r l y  i n  t h e  test  program t h a t  care must be  exe rc i sed  i n  s t o r i n g  t h e  r i m  i n  a Ig 
environment t o  prevent  t h e  r i m  from creeping .  The c reep  is  i n  a d i r e c t i o n  which 
produces d e v i a t i o n s  ou t  of  the  s p i n  plane.  These dev ia t ions  produce an equiva- 
l e n t  d i s tu rbance  i n p u t  t o  t h e  a x i a l  bear ings  as t h e  r i m  s p i n s .  I n  t h e  labora-  
t o r y  model AMCD, s t a t i c  dev ia t ions  of  the  r i m  have been measured and range from 
a maximum of  1.651 mm (0.065 i n . )  t o  a minimum of  0.2032 mm (0.008 i n . ) ,  depend- 
ing  on how t h e  r i m  is s t o r e d .  These numbers are t o t a l  dev ia t ions  (measured from 
peak t o  peak) and were measured midway between suspension s t a t i o n s  w i t h  t h e  r i m  
suspended. The r i m  d e v i a t i o n s ,  or  warp, inc lude  two high and two low p o i n t s  per  
r i m  r evo lu t ion ,  which approximates a s i n e  wave d i s tu rbance  a t  twice t h e  wheel 
s p i n  frequency. The o r i g i n  of  the basic two-cycle-per-revolution shape o f  t h e  
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warp is unknown. By experimenting w i t h  d i f f e r e n t  methods of  s t o r i n g  the  
r i m ,  it w a s  found t h a t  r i m  dev ia t ions  could be h e l d  c o n s i s t e n t l y  t o  0.381 mm 
(0.015 i n . ) .  This  appears  t o  be an acceptable va lue  bu t  confirmation awaits 
higher  speed s p i n  tests. T h e o r e t i c a l l y ,  as r i m  s p i n  speed i n c r e a s e s  and r i m  
s t i f f e n i n g  occurs  ( ref .  21, the  r i m  should f l a t t e n  ou t  and r i m  warp should 
become n e g l i g i b l e .  I n  t he  radial d i r e c t i o n ,  d e v i a t i o n s  of  0.1016 mm 
(0.004 i n . )  from peak t o  peak were measured and exh ib i t ed  a three-cycle- 
per - revolu t ion  shape. There w a s  no s i g n i f i c a n t  change wi th  respect t o  time 
observed f o r  t he  radial  dev ia t ions .  

R i m  s t r u c t u r a l  modes.- The r i m  had out-of-plane bending resonances a t  
about  18, 180, 290, 435, 610, and 800 Hz. These resonances were obtained by 
a frequency sweep w i t h  t h e  r i m  suspended and not  sp inning .  The resonance a t  
180 Hz proved t o  be t h e  most s eve re  and w a s  the one which was exc i t ed  by the  
bea r ing  servo  loops  when an a t tempt  was made t o  i n c r e a s e  rate ga in .  

Drag Losses 

Data f o r  c a l c u l a t i n g  drag l o s s e s  were taken by sp inning  the  r i m  up t o  
304 rpm and l e t t i ng  it coas t  down t o  50 rpm. R i m  warp was measured a t  the  
beginning of spin-up and a t  t he  end of  spin-down and was 0.3683 mm (0.0145 i n . ) .  
Pressure  i n s i d e  t h e  vacuum enclosure  was 11.6 Pa (87 pm H g )  a t  t h e  beginning o f  
spin-up and 1 4 . 4  Pa (108 pm Hg) a t  t h e  end of  spin-down. R i m  speed was sampled 
and recorded a t  5-sec i n t e r v a l s  us ing  the  t es t  se tup  descr ibed i n  appendix A .  
These data were then used t o  gene ra t e  t he  rim-speed-versus-time curve shown i n  
f i g u r e  7 .  The crossmarks i n  t h e  p l o t  are data p o i n t s  and the curve drawn 
through these p o i n t s  w a s  genera ted  us ing  t h e  c u r v e - f i t  technique descr ibed i n  
appendix B. This  curve was used t o  c a l c u l a t e  c o e f f i c i e n t s  of  a drag-loss-  
versus-rim-speed curve ( a l s o  descr ibed  i n  appendix B). Figure  8 is a p l o t  o f  
drag l o s s  i n  watts as a func t ion  of r i m  speed i n  rpm over the  spin-down range,  
and f i g u r e  9 i s  a similar p l o t  over  t h e  range o f  0 t o  3000 rpm. The c o e f f i -  
c i e n t s  o f  the drag-loss  equat ion  i n  watts as a func t ion  of  w ,  r i m  speed i n  rpm, 
were c a l c u l a t e d  t o  be  

P = 7.045(10)'3w + 3.057(10)-5w2 ( 6 )  

where the  f i r s t - o r d e r  term r e p r e s e n t s  h y s t e r e s i s  loss  and the  second-order term 
r e p r e s e n t s  eddy c u r r e n t  loss. T h i s  c a l c u l a t i o n  r e p r e s e n t s  t o t a l  drag l o s s ,  
which inc ludes  l o s s e s  due t o  t he  f l u x  o f  t he  motor magnets c u t t i n g  the  aluminum 
baseplate and cover ,  motor-s ta tor  co res ,  and bearing-element cores .  To ta l  drag 
l o s s  a l s o  i n c l u d e s  l o s s e s  i n  t he  r i m  fe r r i te  material due t o  the  f l u x  from t h e  
bearing elements c u t t i n g  i t ,  l o s s e s  i n  both the  r i m  ferr i te  and bearing-element 
co res  due t o  bearing-element f l u x  change caused by gap changes introduced by r i m  
warp, and a i r  drag due t o  the  r e s i d u a l  p re s su re  i n  the  vacuum enclosures .  An 
i n i t i a l  estimate of  drag l o s s e s  was made f o r  t he  motor-magnet f l u x  c u t t i n g  the 
aluminum baseplate and cover ,  the  magnetic-bearing f l u x  c u t t i n g  the  r i m  ferr i te ,  
and the  graphite-epoxy material o f  t he  r i m .  Drag l o s s  a t  a p res su re  o f  4.67 Pa 
(35 pm Hg) a t  f u l l  speed (2703 rpm) w a s  estimated t o  be 1 w a t t .  U s i n g  t he  same 
formula t ion  f o r  a p r e s s u r e  of 14.4 Pa (108 pm Hg), t he  drag l o s s  becomes 
3.04 watts. To ta l  estimated drag l o s s  from the sources  j u s t  mentioned is 
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approximately 6 watts a t  f u l l  speed. 
appears  t o  be due t o  t he  loss  caused by the  motor-magnet f l u x  c u t t i n g  the  motor- 
s t a t o r  and bearing-element co res  and the loss  i n  the  bearing-element c o r e s  and 
r i m  fe r r i te  caused by r i m  motion r e s u l t i n g  from r i m  warp. 
loss  ( f ig .  9 )  should be a worst-case number s i n c e  high-speed effects such as 
r i m  f l a t t e n i n g  and s k i n  effect  are not  accounted f o r .  

The ma jo r i ty  o f  the  p ro jec t ed  drag l o s s  

The p ro jec t ed  drag 

Rim-Drive Motor 

Performance data f o r  t he  rim-drive motor were taken  i n  t he  reg ion  from 75 
t o  300 rpm. Motor speed was sampled a t  5-sec i n t e r v a l s  us ing  t h e  test s e t u p  
described i n  appendix A. These data were then  used t o  gene ra t e  t h e  rim-speed- 
versus-time curve shown i n  f i g u r e  10. The crossmarks i n  t h e  p l o t  are data 
p o i n t s  and t h e  curve drawn through them is genera ted  by the  cu rve - f i t  tech- 
nique descr ibed  i n  appendix B. The r i m  a c c e l e r a t i o n ,  c a l c u l a t e d  from f ig-  
u r e  10, appeared t o  be a cons t an t  3 rpm/sec over  t he  range of t h e  data. The 
motor to rque  was c a l c u l a t e d  t o  be 1.482 N-m (1.094 l b - f t ) .  

CONCLUDING REMARKS 

A l a b o r a t o r y  test  model AMCD has  been designed and fabricated. I n i t i a l  
tests wi th  t h e  l a b o r a t o r y  model have provided i n s i g h t  i n t o  l i m i t a t i o n s  o f  some 
des ign  approaches taken.  These approaches are (1 )  permanent-magnet f lux-biased 
magnetic bea r ings ,  ( 2 )  completely u n i d i r e c t i o n a l  lay-up of  composite materials 
f o r  the  r i m ,  and (3) poss ib ly  t h e  use of  open permanent magnets f o r  t h e  sp in-  
motor po les .  

Permanent-Magnet Flux Bias ing  

Permanent-magnet f lux  b i a s ing  o f  magnetic bea r ings  p r e s e n t s  advantages 
from the  s t andpo in t  o f  lower power requi red  f o r  suppor t  i n  a lg environment and 
l i n e a r i z a t i o n  o f  current-input-force-output characterist ics.  This  approach 
d i d ,  however, p re sen t  a problem from a control-system s tandpoin t  f o r  t h e  labo-  
r a t o r y  t es t  model AMCD. For s t a b i l i t y ,  a lower l i m i t  on the  servo  bandwidth 
is imposed by the  characterist ics o f  the permanent magnets. The ex i s t ence  o f  
s t r u c t u r a l  modes i n  t he  area of t he  magnetic-bearing se rvo  crossover  o f  t h e  
l a b o r a t o r y  model has l imi t ed  the amount o f  rate g a i n  t h a t  could be u t i l i z e d  
without causing s t r u c t u r a l  r i n g i n g .  Low system damping, a long  w i t h  o t h e r  
effects o f  permanent-magnet f lux  biasing, and r i m  warp ( t o  be discussed sub- 
sequent ly)  combined t o  prevent  the  r i m  from a t t a i n i n g  a s table  s p i n  speed i n  
excess  o f  475 rpm. 
on the  design and f a b r i c a t i o n  o f  a magnetic-bearing system, w i t h  no permanent- 
magnet f l u x  b i a s i n g ,  t o  replace the  e x i s t i n g  bear ings .  

As p a r t  o f  the AMCD development program, work is  being done 

R i m  Fabr i ca t ion  

The r i m  f a b r i c a t i o n  included a u n i d i r e c t i o n a l  lay-up o f  g r a p h i t e  f ibers ,  
bonded by epoxy, i n  a c i r cumfe ren t i a l  d i r e c t i o n .  The advantage of  t h i s  tech- 
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nique is t h a t  t h e  f u l l  s t r e n g t h  of  t he  f i b e r s  can be u t i l i z e d .  However, s i n c e  
t h e  f i b e r s  are 100-percent c i r c u m f e r e n t i a l ,  t h e  only r e s i s t a n c e  t o  c reep  a long  
t h e  a x i s  p a r a l l e l  t o  t h e  s p i n  axis is provided by epoxy. Consequently, care 
must be exe rc i sed  i n  s t o r i n g  t h e  r i m  i n  a l g  environment t o  prevent  t h e  r i m  
from creeping.  The c reep  is  i n  a d i r e c t i o n  which produces dev ia t ions  o u t  of 
t h e  s p i n  p lane .  These dev ia t ions  produce an equ iva len t  d i s tu rbance  i n p u t  t o  
the  ax ia l  bea r ings  as the  r i m  sp ins .  Creep i n  t h e  r a d i a l  d i r e c t i o n  has  been 
n e g l i g i b l e .  Problems of  c reep  i n  subsequent r i m s  could be reduced by ded ica t -  
i n g  some o f  the  f i b e r s  t o  producing s t i f f n e s s  i n  t h e  a x i a l  d i r e c t i o n .  

Spin Motor 

Prel iminary tests of  t he  AMCD l abora to ry  model i n d i c a t e  t h a t  t h e  r i m  s p i n  
motor performs r e l i a b l y  and produces adequate  torque .  The motor produces a 
torque o f  1.483 N-m (1.094 l b - f t )  over t h e  range (up t o  300 rpm) t e s t e d .  How- 
e v e r ,  based on spin-down d a t a  taken over  t h i s  range,  t h e  p ro jec t ed  drag  l o s s e s  
a t  r a t e d  speed are much h igher  than o r i g i n a l l y  p red ic t ed .  Most of  t h e  l o s s  can 
be a t t r i b u t e d  t o  t h e  f l u x  from t h e  open permanent-magnet motor po le s  c u t t i n g  
t h e  motor-s ta tor  and bearing-element co res  and t o  t h e  l o s s  i n  t h e  bearing- 
element co res  and r i m  f e r r i t e  caused by r i m  motion r e s u l t i n g  from r i m  warp. 
Fu r the r  tests a t  h igher  speeds w i l l  be r equ i r ed  t o  confirm the  p ro jec t ed  drag  
l o s s e s  and t o  s e p a r a t e  t h e  c o n t r i b u t i o n s  of  each source .  The p o s s i b i l i t y  
e x i s t s  t h a t  the  l o s s e s  due t o  t h e  open permanent-magnet motor po les  may be high 
enough t o  warrant  r eeva lua t ion  of  t h e  concept f o r  subsequent des igns .  

Langley Research Center 
Nat iona l  Aeronaut ics  and Space Adminis t ra t ion 
Hampton, VA 23665 
February 10, 1978 
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APPENDIX A 

DATA A C Q U I S I T I O N  SYSTEM USED I N  AMCD SPIN-UP AND SPIN-DOWN TESTS 

The test se tup  used t o  o b t a i n  data dur ing  the  l a b o r a t o r y  model AMCD sp in-  
up and spin-down tests is shown i n  f i g u r e  11 .  The s e t u p  cons i s t ed  of  two d i g i -  
t a l  counters  and a two-channel d i g i t a l  p r i n t e r .  One counter  was allowed t o  run  
free under c o n t r o l  o f  its i n t e r n a l  time-base o s c i l l a t o r  t o  provide time i n  sec- 
onds. The o the r  counter  provided a readout  o f  r i m  speed by count ing motor com- 
mutat ion p u l s e s  f o r  one phase a t  a p r e s e t  time i n t e r v a l .  
d e s c r i p t i o n  o f  t h e  s p i n  motor see ref. 6 . )  A t  the  end o f  t h i s  i n t e r v a l  a p r i n t  
command was s e n t  t o  t h e  p r i n t e r  which then recorded t h e  r i m  speed and time count  
contained i n  t h e  o t h e r  counter  a t  t h a t  p a r t i c u l a r  i n s t a n t .  The sample-rate con- 
t r o l  of the  rim-speed counter  w a s  se t  t o  i n i t i a t e  the  count ing i n t e r v a l s  every  
5 sec .  The p r e s e t  time i n t e r v a l  of  t he  rim-speed counter  was 1/36 min. S ince  
t h e r e  are 36 commutation pu l ses  per  phase f o r  one r evo lu t ion  of  t h e  r i m  
( re f .  61, t h i s  r e s u l t e d  i n  a d i r e c t  d i sp l ay  o f  r e v o l u t i o n s  p e r  minute (rpm). 

(For a detai led 

8 



APPENDIX B 

DRAG-LOSS AND MOTOR-TORQUE CALCULATIONS 

This  appendix p r e s e n t s  t he  method used t o  c a l c u l a t e  t h e  c o e f f i c i e n t s  of  
t h e  drag-loss-versus-rim-speed equat ion  based on d a t a  taken during spin-down 
and the  equat ions  of  motor torque based on da ta  taken during spin-up. 

Drag Loss 

Ins tan taneous  torque on t h e  r i m  can be expressed as 

dw 
T = I- 

d t  

where T is  torque ,  I is r i m  i n e r t i a ,  and dw/dt is the  ra te  o f  change o f  
r i m  speed with r e s p e c t  t o  time. The in s t an taneous  power can be represented  as 

P = TW (B2) 

o r ,  by us ing  equat ion  ( B I ) ,  as 

dw 
P I w -  

d t  

S ince  I is known, only  t h e  ra te  of  change of  r i m  speed a t  a g iven  speed i s  
needed t o  compute the  in s t an taneous  drag power. Using t h e  test se tup  descr ibed  
i n  appendix A ,  r i m  speed w a s  recorded a t  5-sec i n t e r v a l s  as t h e  r i m  was allowed 
t o  spin-down from 304 t o  50 rpm. 
Chebyshev polynomials) was used on a desk-top c a l c u l a t o r  t o  genera te  a four th-  
o rde r  curve f i t  through these  da t a  which r e s u l t e d  i n  a polynomial of  t h e  form 

A curve - f i t  program (curve  f i t t i n g  by 

w = a0 + a l t  + a2 t2  + a3t3 + a4t 4 

Equation ( B 4 )  was then d i f f e r e n t i a t e d  t o  form 

dw - = a1  + 2a2t  + 3a3t2  + 4a4t3 
d t  

Then w and dw/dt were computed a t  given va lues  o f  t and equat ion  (B3) w a s  
used t o  compute drag power a t  t h e s e  s p e c i f i c  p o i n t s .  

The cu rve - f i t  program was then used t o  f i t  a second-order curve through 
t h e s e  va lues  which r e s u l t e d  i n  a polynomial of t h e  form 

h A 

P = alw + a2w2 (B6) 
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APPENDIX B 
A 

It should be noted t h a t  the cons t an t  term a0 was not  e x a c t l y  ze ro  i n  equa- 
t i o n  (B6). However, it was r e l a t i v e l y  small and was ignored.  

Motor Torque 

Using the  test  s e t u p  descr ibed i n  appendix A ,  r i m  speed was recorded a t  
5-sec i n t e r v a l s  as it was accelerated by the  s p i n  motor from 75 t o  300 rpm. 
The data i n d i c a t e d  cons t an t  a c c e l e r a t i o n  over  t h i s  range so  the  c u r v e - f i t  pro- 
gram mentioned p rev ious ly  w a s  used t o  o b t a i n  a f i r s t - o r d e r  curve f i t .  T h i s  
r e s u l t e d  i n  a polynomial o f  t he  form 

w = a0 + a1t 

D i f f e r e n t i a t i n g  t h i s  equat ion  r e s u l t s  i n  

dw - 
- = a1 
d t  

Equation ( B 8 )  was then s u b s t i t u t e d  i n t o  equat ion  ( B 1 )  t o  compute t h e  motor 
torque.  
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Figure 7.- Rim speed plotted against time during spin-down. 
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